1 脉冲方式
上位机通过发送脉冲到伺服驱动器,来实现控制。在这种方式下,用脉冲频率来控制速度,用脉冲个数来控制位置。同样,伺服驱动器也会发送脉冲数,来告诉上位机,伺服电机的位置和速度。
低端PLC,数控系统,以及各种单片机系统一般都是采用这种模式,简单易行,成本低廉。很显然,当伺服轴数增加,这种控制方式的缺点就会显现出来,上位机硬件成本会增加,配线会很复杂,而且现场EMC不好的话,脉冲极易丢失。所以,这种模式一般是在四轴一下,所以,大部分PLC的脉冲控制轴数都在两轴或是三轴,极少部分PLC可以实现四轴。
2 通讯方式
通讯方式就是专门为解决脉冲方式的不足而产生的,已经成为一种发展趋势,他把脉冲数和脉冲频率通过通讯的方式,单轴运动控制器发送给伺服驱动器,这种方式不但可以传递伺服电机的位置信息,还能传递各种状态信息,比如伺服电机的电流,扭矩以及伺服驱动器的故障代码等等,很显然,当轴数多的时候,这种方式的优势不言而喻。
由于运动控制的特殊性,所以不同的厂家都推出自己的运动控制总线,既有开放的,也有封闭的,比如CANopen,以及在此基础上开发的CANmotion和CANlink,MECHATROLINK-II,CCLink等等。随着工业以太网技术的发展,基于以太网的运动控制总线也应运而生,比如EtherCAT,ProfinetNet,MECHATROLINK-III等等。还有基于光纤的SERCOS,SSCNETⅢ/H等等。
虽然 通讯的形式繁多,但他们解决的一般都是实时性问题,因为对于运动控制来说,实时性是非常重要的。从应用开发的角度来说,脉冲和通讯是没有区别的,只是信号传递的形式发生了变化。
原创文章,作者:老铁外链, 老铁,如若转载,请注明出处:http://boke.6ke.com.cn/?p=49332